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Abstract. The growing study in RGB-D sensor and 3D point cloud
have made new progress in obstacle avoidance for the visually impaired.
However, it remains a challenging problem due to the difficulty in de-
sign a robust and real-time algorithm. In this paper, we focus on scene
segmentation and labeling. As man-made indoor scene contains many
planar area and structure, plane segmentation and classification is im-
portant for further scene analysis. This work propose a multiscale-voxel
strategy to reduce the effects of noise and improve plane segmentation.
Then the segmentation result is combined with depth data and color
data to apply graph-based image segmentation algorithm. After that, a
cascaded decision tree is trained to classify different segments into dif-
ferent semantical type. The method is tested on part of the NYU Depth
Dataset. Experimental results show that the proposed method combines
the advantages of depth data and the geometry characteristics of the
scene, and improves scene segmentation and obstacle detection.

Keywords: RGB-D, Plane Segmentation, Scene Segmentation, Obsta-
cle Detection, Blind Navigation.

1 Introduction

In recent years, obstacle avoidance system or Electronic Travel Aids(ETA) [1]
have been developed to help the visually impaired to walk safely. ETA takes
advantage of modern sensing devices to obtain information of the surrounding
environment and the detected information is converted to non-visual signal that
can be received and understood by the visually impaired. Among different sen-
sors for ETA, image sensors can provide the most abundant surrounding visual
information. Traditionally, stereo vision is used to obtain the depth data of the
scene. But it requires large amount of calculation and sensitive to changes in
illumination, occlusion, shadow, etc. Coming with the RGB-D sensors, like the
Microsoft Kinect, it becomes very easy to obtain both RGB and depth data.
Using the Kinect sensors in scene segmentation and obstacle detection becomes
a key research topic.
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Fig. 1. Output of our system

However, RGB-D image segmentation is not an easy task. The depth data
captured by the Kinect sensors is very noisy and the noise is not uniformly dis-
tributed. In addition, many image segmentation and object classification algo-
rithms for 2D image processing are not suitable for 3D point cloud. For pointwise
classification, it is also very hard to design effective 3D features that is invariant
to translation, rotation and scaling. Furthermore, the lack of labeled dataset
that is suitable for scene analysis for the visually impaired is another problem.
So the classification method should be effective using a small training dataset.

This paper proposes a framework to semantically segment and detect object
for indoor scene. Fig. 1 shows the sample output of the system. The original result
is generated on point cloud and we project it to 2D image for better presentation.
There are two major contributions in our work. Firstly, we propose a multiscale-
voxel plane segmentation algorithm which build two different voxel grids on
the point cloud. A dense voxel grid is built on the near area of the scene and a
sparse voxel grid is built on the far area of the scene. Using multiscale voxel could
solve the problem of un-uniformly distributed noise of depth data. Secondly, we
extract segment-wise geometry and spatial features to train a cascaded decision
tree. The extraction of segment-wise feature is fast and robust in point cloud.
And compared with pointwise features, the training on geometry feature and
spatial feature requires less data. The experimental results show the proposed
algorithms perform well and are applicable in obstacle detection tasks for the
visually impaired.

2 Related Work

In recent years, computer vision based ETA have been developed very fast and
achieved new progress. Lin et al. [2] develop a wearable stereo vision system
composed of an eyeglasses and an embedded processing device to help avoid
obstacles in real-time. Zoellner et al. [3] uses the Microsoft Kinect and optical
marker tracking to help visually impaired people find their way inside buildings.
It provides continuous vibration feedback on the user’s waist to give an impres-
sion of the environment. And the optical markers can be used to tag points of
interest to enable synthesized voice instructions. However, these systems failed
to give any semantical description of the scene. So the user could only accept ”in-
struction” and not aware of what the whole scene is like. Tian et al. [4] proposed
a computer vision-based wayfinding aid for blind people. Firstly, doors, elevators,
and cabinets are detected on their general geometric shape. Then the intra-class
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objects are recognized using optical character recognition (OCR) software on
extracted text regions. Lee et al. [5] incorporate visual odometry and feature
based metric-topological Simultaneous Localization And Mapping (SLAM) into
the navigation system. Then a vicinity map based on dense 3D data obtained
from RGB-D camera is built to do path planning. These methods only focus on
some specific part of the scene. So the user can’t receive the information about
the whole scene.

Semantical scene analysis could help the visually impaired know better of
the surrounding environment. And there have been many development in RGB-
D scene analysis method recently. Silberman et al. [6] use depth for bottom-up
segmentation and use context features to infer support relationships in the scene.
Ren et al. [7] use kernel descriptors on superpixels and use a Markov Random
Field (MRF) on superpixel with segmentation tree to model the context of the
scene. Choi et al. [8] use 3D geometric phrase model to capture the semantic and
geometric relationship between objects which frequently co-occur in the same
3D spatial configuration and then understand the indoor scenes. Gupta et al. [9]
propose algorithms for object boundary detection and hierarchical segmentation.
Their algorithms visit the segmentation problem afresh from ground-up and
develop a gPb like machinery to combine depth information naturally. Wang
et al. [10] propose a label propagation method to utilize the existing massive
2D semantic labeled datasets such as ImageNet. Koppula et al. [11] parse the
indoor scene with RGB-D data in a mobile robots. A full 3D reconstruction is
applied with multiple views of the scene acquired with a Kinect sensor. Then the
3D point cloud is over-segmented and used as underlying structure for a MRF
model. These methods focus on the algorithm for general scene segmentation
and labeling, while lacking specific analysis for the visually impaired. Wang et
al. [12] use hough transform to extract the concurrent parallel lines on the RGB
channels and then use depth information to distinguish stairs from pedestrian
crosswalks. Then stairs are be recognized as upstairs and downstairs. These
methods are mainly focus on the accuracy of scene segmentation while neglect
the efficiency of the algorithm which, however, is a key factor in our work. Liu
et al. [13] use a graph-based segmentation algorithm which combines the result
of plane segmentation and RGB-D data. The method is more focused on the
efficiency of the algorithm. However, in order to help the visually impaired to
know better of the scene, more semantical analysis, like the type of different
structures, should be conducted.

In man-made indoor environment, there exist many planes which contain
much structural information. Extracting these planes could be very helpful in
scene segmentation. There are many plane segmentation algorithms in litera-
ture. One way to extract planes is applying 2D segmentation methods on 3D
data. However, this approach performs badly if two planes are very close to each
other. In order to take advantage and make full use of 3D data, many new meth-
ods have been proposed. Holz et al. [14] compute local surface normal of point
clouds using integral images. And then the points are clustered, segmented, and
classified in both normal space and spherical coordinates. This method achieves
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a frame rate at 30Hz at the resolution of 160 x 120 pixels. Dube et al. [15]
use Randomized Hough Transformation to extract planes from depth images.
This algorithm could run in real-time on a mobile platform. However it can only
detect planes, and cannot segments out the planes. Wang et al. [16] propose a
two-step fast plane segmentation algorithm which combines the speed of voxel-
wise cluster and the accuracy of pixel-wise process. The algorithm is fast and
robust if the 3D data is accurate and don’t have much noise. However, due to the
limitation of Kinect sensor, the 3D data that is more than 3 meters away from
the sensor is inaccurate and very noisy. So, this algorithm could not properly
extract planes 3 to 5 meters away from the sensor.

3 Overview of the System

The framework of our whole system is shown in Fig. 2. At first, the input RGB-D
data is preprocessed. The position of the RGB camera and the depth camera
are not the same, so they should be aligned to the same camera coordinate. The
second step is scene segmentation, including plane extraction and graph-based
image segmentation. Firstly, the proposed multiscale-voxel algorithm is applied
to do plane extraction. Then the result is introduced into the graph-based image
segmentation. The third step is segment classification. At first the segment is
classified as planes and obstacles. Then planes are classified into different types.
Segment classification involves training and testing. In training, the dispersion
for each segments is calculated and the multilevel thresholds is determined. And
then a cascaded decision tree is trained on geometry and spatial features. In test-
ing, each segment is classified by dispersion into planes or obstacles. Then planes
are further classified into different types using the trained cascaded decision tree.
Thus, the whole scene is semantically labeled.

4 Scene Segmentation

Scene segmentation is the first step in our system. We propose a fast plane
segmentation algorithm based on multiscale voxels. The algorithm is fast and
robust to the noise in depth data. After plane segmentation, the results are used
as part of the weights in graph-based image segmentation which also combines
RGB data and depth data.

4.1 Fast Plane Segmentation with Multiscale Voxels

This paper proposes a novel plane segmentation algorithm to improve the two-
step fast plane segmentation algorithm.

The two-step plane segmentation algorithm has two stages [16]. At the first
stage, a voxel grid is created on the 3D point cloud data to achieve sparse
sampling and noise suppression. For each voxel, the least square method is used
to fit a plane and get the plane normal vector. Then region growing algorithm
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Fig. 2. System architecture

is applied to cluster the voxels according to the normals. At the second stage,
accurate judgment is done for each point in un-clustered voxels. After plane
segmentation, if the angle between the normal of two different planes is close to
zero, these two planes is merge as one.

The size of the voxel grid directly affects the result of plane segmentation.
Using an inappropriate side length of the voxel would probably obtain seldom
planes. However, as mentioned before, the quality of the 3D point cloud data
varies according to the distance. The depth data near the sensor would have less
noise and higher resolution than the depth data far away from the sensor. As a
result, using one voxel grid with fixed size cannot achieve the best segmentation
result. For example, using a set of fine parameters, planes near the sensor can
be extracted out well, but further planes may not be well extracted out because
they would be considered as non-planar area under this condition.

This paper proposes a multiscale-voxel strategy to solve this problem. Firstly,
a dense voxel grid, which has short side, is created on the whole 3D point cloud
data. Using this voxel grid, we apply the two-step plane segmentation algorithm
and get several planes. Secondly, a sparse voxel grid, which has comparatively
long side, is created on the further part of the 3D point cloud. In each voxel
grid, the two-step segmentation algorithm would extract different planes. Finally,
overlapping areas are merged together.

Formally, a dense voxel grid Vg is created on the whole point cloud C. Then
a threshold T is set to separate the point cloud into two parts: the near part C,
and the far part Cy. That is,

On7 Di <T

1

Vpl(iC,y,Z) € Cvpl S {
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where p;(z,y, z) represents the 3D coordinate of a point, p;, is the depth of
point p;. Then a sparse voxel grid Vi is created on the far part Cy. Apply the
two-step plane segmentation algorithm on both V; and V;. Then we can get the
candidate planes Py from V; and Ps from V. At last, merge the overlapping or
duplicated planes. For each P; € Py,P; € Ps, if P; and P; is adjacent and their
normal is similar, merge P; and P; as P, and add P, to the final plane set P.
Otherwise, add both P; and P; to P.

Applying the proposed multiscale voxel strategy, our algorithm is more robust
to depth noise in indoor scenes which range from 0.5m ~ 5m. As a comparison,
the original two-step algorithm could only perform well at the range from 0.5m ~
3m. That means the proposed method is more suitable for object detection for
the visually impaired because 3m is not safe enough if the user of the system
moves relatively fast.

4.2 Graph-Based Image Segmentation

After plane segmentation, we apply graph-base image segmentation [17] on the
image. The graph-based image segmentation algorithm is a fast unsupervised
segmentation method, which is suitable in our task. The approach in Liu [13]
is adopt to combine the result of plane segmentation in graph-based image seg-
mentation. The weight for RGB and depth data is defined as

w(vi,vj) = a-wrap(vi,v;) + 0 (2)

where wrap(vi,vj) is the difference of the RGB values between two pixels.
And if v; and v; belongs to the same plane, « is set a small value in order to
reduce the RGB difference in weight. Otherwise, « is set a value that is close to
1 in order to let the RGB difference become a main factor in weight. J is used
to balance the value under different condition so that the weight would not be
too small or too big. In this way, the plane segmentation result is semantically
combined with RGB and depth data, which can improve the result of image
segmentation.

5 Segments Classification

After image segmentation, the scene has been divided into several segments.
The next step is to classify these segments into different semantic blocks. In
indoor scene, there are many planes which usually come from ground, walls and
the surface of tables. These information is very important in understanding the
scene. Other non-planar parts can treat as obstacles. So the first step is to divide
the segments into planes and obstacles and then planes are classified into different
types. In addition, small segments is ignored because they usually are fragments
of a large objects and don’t have significant affects in scene understanding. So
only large segments would be classified and small segments would be merged
into adjacent large segments.
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5.1 Plane-Obstacle Classification

Although in plane extracting we have already known the extracted segments
are planes, after image segmentation these segments would changed and many
new segments are generated. So each segments should be classified again. The
dispersion of all the points in a segment indicates whether the segment is a plane
or not. Planar segments have low degree of dispersion and Non-planar segments
have high degree of dispersion. In order to quantify the degree of dispersion, the
least square estimation is used to fit a plane for all the points of each segment. It
is obvious that if a segment is a plane, the average distance between the points
to the plane is small and if a segment is not a plane, the average distance would
be large. So, the average distance between the points to the fitting plane is used
to represent a segment’s dispersion. Formally, we assume that the plane equation
of a segment is Az + By + Cz + 1 = 0. Then the least square estimation for
A, B,C is

A 2%2 DoTYi ) TiZi - DT
Bl =Yz Yyl Yviz > Yi (3)
c DTz Y yizi 3% POEZ

where (x;,v;,2i),1 = 1,2,3,..., N represents the coordinates of points in the
segment. Secondly, the dispersion of the segment is calculated as

XN F(pi,P)
I (4)

where F(p;, P) represents the distance of point p; to plane P.

The dispersion of every segment is calculated. If the dispersion is large, the
segment would be an obstacle. Otherwise, the segment is more likely to be a
plane. Then a threshold of dispersion is set to divide the segments into plane
and obstacle. However, a fixed threshold is not suitable because of noise and
imprecise image segmentation. We know that the depth data from Kinect sen-
sors are very noisy and the image segmentation cannot be so precise. Moreover,
larger segments tend to have more noise and the larger the segment the more
imprecise points it would contain. Considering this, a multilevel threshold strat-
egy is applied. In practice, we conduct statistic analysis on the labeled dataset
and determine different thresholds for segments according to their size.

D

5.2 Plane Classification

In indoor environment, there exists many planes. The ground plane, wall plane,
and table are the largest ones and they are the major factors that define the
structure of the scene. Therefore, as we have got planes from the former step,
they should be classified into different types so that useful information could be
provided to the visually impaired. In this paper, we define three types of plane:
ground, wall, and table. In addition, the side face of large cabinets are considered
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as wall because they impede walking just like walls. And the top face of beds,
sofa or small cabinets are considered as table because people would put things
on them just like tables.

As the obstacle detection system should run at a high frame rate, the plane
classification algorithm should be efficient. In classification, feature extracting
usually is the most time consuming step. Therefore, extracting features on pixel
scale is not appropriate. On the other hand, ground, wall and table have signifi-
cant structural differences which reflected in their geometry features and spatial
features. It is obvious that the ground plane is horizontal and the wall plane is
vertical and the table plane is much higher than the ground. So we extract the
angle between the normal and the horizontal plane to represent the geometry
feature of that plane.

Before that, we should determine the horizontal plane. We know that in the
camera coordinate, the vertical axis may not be vertical in real world because
the camera is always moving and rotating. In order to know the real horizontal
plane, a two-step horizontal-plane-finding strategy is proposed. Firstly, the angle
a; between the normal n; of each segment (vector (A, B, C) in Equation 3) and
the vertical vector N, of the camera coordinate (usually one of the axis in the
coordinate system) is calculated. And all the normals is divided into approximate
vertical and approximate horizontal according to the angle. More specifically,

N’Ua 7
ni € { = (5)

NERSE

th a; Z

Secondly, the average vertical normal n, is calculated of the approximate
vertical normals set N,. Then n, is the normal of real horizontal plane. Next,
the angle between the segment normal and the vertical normal n, is calculated
as one of the features for classification. Another feature is the vertical distance
between the segment and the lowest point of the scene. It can be easily calculated
since we already have the plane equation of each segment and the vertical normal
of the scene.

After extracting these features, we train decision trees on the training data.
As the geometry feature and spatial feature have semantical meanings, we could
use them as priors when training the decision trees. The geometry feature could
indicate whether a plane is vertical or horizontal and all vertical planes in the
indoor scene are considered as walls as discussed before. So at the first step, a
decision tree is trained just on geometry feature to classify vertical plane and
horizontal plane. Next step, for all horizontal planes, the spatial feature could
indicate whether a plane is ground or table. Therefore, another decision tree is
trained on spatial feature to classify ground and table. At last, the two decision
trees are cascaded as one classifier. Taking advantage of the semantical meaning
of the features, the manually intervened decision tree is more rapid and accurate.
And the structure of the decision tree is simple and explainable, which makes
the analysis of the training and testing results easily and clearly.
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6 Experimental Results

6.1 Dataset

The data used in our experiments come from the NYU Depth Dataset [6]. The
NYU Depth Dataset is comprised of video sequences from a variety of indoor
scenes recorded by both the RGB and Depth cameras from the Microsoft Kinect.
The resolution of RGB images and depth data are both 640 x 480 pixels. In this
paper, 89 pairs of RGB and Depth images are selected. The dataset is manually
labeled for ground, wall, table and obstacle.

6.2 Plane Segmentation

We test the proposed multiscale-voxel segmentation algorithm on the whole
dataset. In our experiments, a dense voxel grid with side of 20cm is created
on the area range from 0.5m to 3m and a sparse voxel grid with side of 30cm is
created on the area range from 3m to 5m. The segmentation result is compared
with the original fixed-size-voxel segmentation algorithm [16], which is also ap-
plied on our dataset. Some of the result are shown in Fig. 3. The first row is the
original RGB images, the second row is the segmentation result using fixed-size-
voxel algorithm and the third row is the segmentation result using the proposed
multiscale-voxle algorithm. The difference between the two segmentation algo-
rithm is mark with yellow circles. We can see that in the near area both of the
two algorithms perform well in extracting planes. However, in the far area, the
fixed-sized-voxel fails to extract the planes. In comparison, the multiscale-voxel
algorithm could also extract the planes in far area as well as in the near area.
The experimental results indicate that the multiscale strategy is more robust to
noise. It is because when the depth of field get larger the depth data get more
noisy. This proves the proposed multiscale strategy is suitable for the depth data
generated by the Kinect sensors and have better plane extracting results.

6.3 Segments Classification

In order to determine the appropriate thresholds for plane-obstacle classification,
we calculate the dispersion for every plane on the training dataset after above
segmentation. Then the ground truth type of each segment can be determined
by the annotation. For each segment, if it is annotated as a plane, the dispersion
is calculated using Equation 4. Then the segments is divided into three different
set according to their size (the number of points in a segment). Empirically, we
define them as: small segments (size < 5000), medium segments (5000 < size
< 10000) and big segment (size> 10000). For each set, the average d of top
10% largest dispersion is calculated. However, due to the imprecision of image
segmentation, the average number would be too strict for classification. So we use
a compensation coefficient a to adjust it. Then the threshold for a set is (1+a)-d.
In our experiment, « is 0.1. After the thresholds have been determined, we run
plane-obstacle classification on the testing dataset. We have 89 labeled images
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Fig. 3. Plane segmentation results of fixed-size voxels and multiscale voxels. Different
planes are randomly colored.

for our test, which consist 262 segments of wall, 112 segments of ground, and 91
segments of table. Half of the segments is used for training, and the others for
testing.

After plane-obstacle classification, we test the proposed plane type classifi-
cation. We conduct three set of experiments. The first is training decision tree
only on geometry feature. The second is training decision tree only on spatial
feature. And the third is the cascaded decision tree that combines the decision
tree trained on geometry feature and the decision tree trained on spatial feature.
Fig. 4 shows the confusion matrix for each set of the experiments. From Fig. 4(a)
we can see that the recognition rate for wall and ground is very high while all
the table have been classified to ground. It’s because the normal of wall is hor-
izontal and the normal of ground and table are both vertical. So the geometry
feature could not classify ground and table since they have the same geometry
feature. Fig. 4(b) shows that most wall and ground are correctly classified but
most table have been wrongly classified as wall. It is obvious that tables are
much higher above the ground just like the upper part of walls. So table would
have the same spatial feature as part of the wall. Therefore it is reasonable that
tables are classified to walls. In Fig. 4(c), all the plane types achieve very high
recognition rate. This indicates that the cascaded decision tree combines both
the advantage of the geometry feature and spatial feature. Theoretically, using
plane normal could recognize walls from the other two kind of planes as only
walls have horizontal normals. Then tables and ground could be separate by
their height above the lowest point of the scene. The experiments proves the
combination of the proposed geometry feature and spatial feature are mutually
complementary. Then the results of plane type classification and plane-obstacle
classification are integrated to analyze the overall classification result. We apply
Liu’s approach [13] on our dataset and compare the result with our method as
Fig. 5 shows. We can see that our method significantly improves the classifica-
tion result in wall, ground and table. This prove the spatial feature and geometry
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Fig. 4. Confusion Matrix. (a) is the confusion matrix of decision tree trained on geom-
etry feature. (b) is the confusion matrix of decision tree trained on spatial feature (c)
is the confusion matrix of the cascaded decision tree.

feature could well describe the character of large planar segments. However, when
classifying obstacles, the proposed features performs not well. That’s why our
method haven’t achieve a higher classification rate in obstacles.
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Fig. 5. Comparison between Liu’s approach and our approach

7 Conclusions

For indoor scene analysis based on RGB-D for the visually impaired, we propose
a multiscale-voxel strategy which improves the accuracy of scene segmentation.
Compared with fixed-size-voxel method, our method is more robust to noise and
have better performance for the far area of the scene. We also propose a cascaded
decision tree based plane classification algorithm to structurally label the indoor
scene. Our algorithm extract geometry and spatial feature from the segments
after image segmentation. Experimental results show that the proposed method
significantly improves the scene structural labeling. The whole system is fast
and robust, which meet the requirement of obstacle detection for the visually
impaired. In the future, we will apply our method on image sequence or videos
and detect more structural area that the visually impaired may care.
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